Identifying Energy Efficiency Strategies for Laboratories

LABS 21
NREL, Otto Van Geet
Enermodal Engineering, Sue Reilly

Building Model

- 100,000 net sf
- CAV w/ hot water reheat
- 74F/72F w/ Min 30%
 RH, Max 60% RH
- Chillers: 0.5 kW/ton
- Boilers: 80% η
- Electricity: \$0.03/kWh, \$7/kW
- Gas: \$0.6/therm

Climates

	Minneapolis	Denver	Seattle	Atlanta
Winter design temperature (F)	-11	3	28	23
Summer design temperature (F)	88/77	90/59	81/64	91/74
HDD65 (F-days)	8002	6113	4867	3089
CDD65 (F-days)	634	566	127	1611

Internal Loads

Plug Loads

- Perimeter-10 W/sf
- Core 8.52 W/sf

Lighting

- Perimeter-1.8 W/sf
- Core 1.4 W/sf

<u>People</u>

•275 sf/per

8am-10pm, M-F All Loads Scheduled

Effect of Plug Load Assumption

How Much Air?

Outside Air Requirements

Fume Hoods

- 1 hood/450 sf
- 18" high, 6' wide
- 100 fpm face velocity
- Average exhaust = 900 cfm or 2cfm/sf

Design Air Flow (cfm/sf)

	Base	Plug	Plug
		6 W/sf	3 W/sf
Minneapolis	2.1	2.0	2.0
Denver	2.5	2.1	2.0
Seattle	2.1	2.0	2.0
Atlanta	2.1	2.0	2.0

Fan Energy Use

Base Case

Heating and Humidity Control

Different Levels of Humidity Control

Efficiency Strategies

Ventilation

- VAV
- Flow Setback
- Low pressure drop

Energy Recovery

- Enthalpy Wheel
- Heat Pipe
- Run-Around Loop
- Condenser Water

VAV and Flow Setback

Annual Energy Costs

Total Energy Use

Energy Recovery Ventilation

ERV Energy Costs

Downsize Chilled Water System

Downsize Hot Water System

Conclusion

Present Value, \$/sf

	Minneapolis	Denver	Seattle	Atlanta
VAV	\$5.4	\$1.2	\$2.5	\$4.0
Wheel	\$18.3	\$10.5	\$3.4	\$5.6
Adv Wheel	\$22.4	\$11.9	\$4.5	\$10.0
Adv Loop	\$15.5	\$7.0	\$4.3	\$7.5

